

Katja Krüger (DESY)

CPAD Instrumentation Frontier Workshop 2021 18 March 2021

Overview

Motivation

- The CALICE Analog Hadron CALorimeter AHCAL
 - Physics Prototype
 - Engineering Prototype
 - Further Developments
- SiPM-on-Tile technology beyond Higgs Factories
 - CMS HGCAL
 - DUNE Near Detector
- Summary

Motivation

Higgs Factories

European Strategy Update identified Higgs Factory as high priority

Main Beam

Linear & Circular Proposals

e- main linac, 12 GHz, 72/100 MV/m, 21 km

TA turnaround
DR damping ring
PDR predamping ring

interaction point

CLIC

FCCee

LTB: Linac to Booster BTC: Booster to Collider Ring

Calorimeters for Higgs Factories

- goal: want to distinguish $Z \rightarrow jet$ jet from $W \rightarrow jet$ jet
- requires $\sigma(E)/E \approx 3-4\%$
- can be reached by particle flow algorithms (PFA)
 - for each particle within a jet: use the subdetector with optimal resolution
 - need to avoid double counting and wrong merging
- need an imaging calorimeter!
- requirements for the calorimeter:
 - highly granular
 - reconstruction of neutral particles: good energy resolution
 - calorimeter has to be within magnet coil: very compact
- Scintillator tiles are a scalable, cost effective solution

The CALICE AHCAL

The Origin: AHCAL Physics Prototype

- The first large calorimeter based on scintillator tiles read out by SiPMs
 - WLS fibers in each tile
- Tested in many testbeams 2006-2012

AHCAL Physics Prototype: Results

AHCAL Technological Prototype

- highly granular scintillator SiPM-on-tile hadron calorimeter,
 3*3 cm² scintillator tiles optimised for uniformity
- fully integrated design
 - front-end electronics, readout
 - voltage supply, LED system for calibration
 - no cooling within active layers -> power pulsing
- scalable to full detector (~8 million channels)
- geometry inspired by ILD, similar to SiD and CLICdp
- HCAL Base Unit: 36*36 cm², 144 tiles, 4 SPIROC2E ASICs
 - slabs of 6 HBUs, up to 3 slabs per layer

AHCAL Technological Testbeam Prototype

- Large enough to contain hadron showers
 - 38 active layers of 72*72 cm²
 - 4 HBUs per module
 - in total: 608 SPIROC2E ASICs, ~22000 channels
 - SiPMs: Hamamatsu S13360-1325PE
- All modules interchangeable
- Built with scalable production techniques in ~2 years
- Operated in beam tests with muons, electrons and pions at CERN SPS in 2018
 - 3 weeks of beam time
 - Collected O(100) mio events
 - Very stable running
 - Nearly noise free
 - < 1 per mille dead channels

AHCAL Technological Trototype at SPS Testbeam

AHCAL Technological Prototype: Ongoing Analyses

High granularity offers detailed look into hadron showers

- Used in particle ID based on Boosted Decision Trees
- Studies of shower shapes
- Application of the PandoraPFA Particle Flow Algorithm

Magenta: Charged Hadron Cyan: Neutral Hadron Grey: Unclustered Hits

AHCAL Prototype: Hit Time Measurement

New feature in AHCAL technological prototype: time measurement for individual hits

- Design resolution: ~1 ns
- SPIROC2E readout ASIC supports 2 bunch clock speeds
 - Testbeam mode: 250 kHz clock
 - More efficient for data taking in testbeams
 - Worse hit time resolution: ~2ns
 - ILC mode: 5 MHz
 - Adapted to ILC bunch structure
 - Better hit time resolution: ~0.8 ns
- Full exploitation in data analysis just started
- Most testbeam data so far taken in testbeam mode

AHCAL Plans: Testbeam Measurements

Fully exploit timing capabilities

- Perform full set of testbeam measurements in ILC mode
- Develop reconstruction algorithms to better use hit time information

Tungsten Stack

- Data taken so far with steel absorber stack
- Tungsten would offer shorter showers
- Valuable input for hadronic shower models (ECAL)
- Plan to re-use tungsten absorber stack already used for physics protype

Running with ECAL

- Performance of a calorimeter system depends on combination of ECAL and HCAL
- Plan to take data together with CALICE silicon-tungsten and/or scintillator-tungsten ECAL

AHCAL Plans: Hardware Developments

Alternative scintillator geometry

- Megatiles would allow larger units for mechanical assembly
- Status: Ongoing effort, optimization of uniformity and cross talk

Alternative Readout ASIC (KLauS)

- Wide range of applications
- Possible application at circular Higgs factories
- Optimised for SiPMs with small pixels (10µm) -> possible application in ECAL
- Status: KLauS6 with full functionality available, ongoing effort to integrate into AHCAL DAQ

Common Readout

- Harmonise readout between CALICE SiW ECAL and AHCAL
- Status: just started

SiPM-on-Tile calorimetry beyond Higgs Factories

SiPM-on-Tile in CMS HGCAL

- CMS calorimeter endcap will be replaced for HL-LHC by High-Granularity calorimeter
- synergy with high granularity calorimeter concepts developed for electron-positron colliders
 - Use SiPM-on-tile wherever radiation levels allow

SiPM-on-Tile Technology for HGCAL

- New challenges:
 - radiation levels
 - data rates
 - operation at -30 degrees
 - Many different tile and board sizes
- Adaptation of AHCAL technologies to HGCAL
 - Readout with fast and rad-hard components
 - Careful design for large temperature variations (from assembly to operation)
 - More flexible and robust assembly procedures
 - Tile wrapping
 - Tile glueing

18

Deep Underground Neutrino Experiment

- DUNE Far Detector: Study neutrino oscillations
 - Large LAr TPCs
- Near Detector (ND): measure beam before oscillation
 - DUNE PRISM: 3 detectors of which 2 can be moved off-axis
 - ND-LAr: Liquid Argon TPC
 - ND-GAr: High Pressure GAr TPC, surrounded by ECAL and magnet
 - SAND: plastic scintillator target

SiPM-on-Tile for DUNE ND-GAr

ND-GAr

- Gaseous Argon TPC surrounded by ECAL and magnet
- Lower energy threshold than liquid Argon -> better to distinguish some models
- goal: detect π^{o} from neutral current interactions and neutrons from interactions of neutrinos with Argon nuclei
 - typical energies of a few 100 MeV
 - need good energy and direction measurement
- Large sampling ECAL with good energy and angular resolution, neutron sensitivity and sub-ns time resolution
 - Scintillator tiles and strips directly readout by SiPMs
 - New challenges:
 - Very low energies -> very thin absorber
 - Very large area -> incorporate strips
 - Neutron sensitivity

Summary

- SiPM-on-Tile calorimetry offers high granularity and good energy resolution at reasonable cost
- Performance demonstrated with CALICE AHCAL physics prototype
- Engineering design demonstrated with CALICE AHCAL technological prototype
- SiPM-on-Tile technology can be adapted to different conditions
 - CMS HGCAL
 - DUNE Near Detector
- Open for new ideas, e.g. timing information in compensation methods
- Active community, new collaborators welcome!

Thank you!